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In recent years there had been a growing interest in analog models of general relativity,
with certain superfluid solutions simulating black hole solutions of Einstein’s gravita-
tional field equation. The quantization of a superfluid, composed of discrete particles
(helium atoms), treated as a nonrelativistic many body problem does not lead to di-
vergencies as the quantization of Einstein’s field equations. Quantization of gravity is
possible in string theory, but only if one introduces the daring hypothesis of higher
dimensions. But if the gravitational field is made up of discrete elements as superfluid
helium is made up of helium atoms, then gravity can be quantized without difficulty in
three space and one time dimension. Such a hypothesis, of course, implies that Lorentz
invariance is a dynamic symmetry caused by real rod and clock deformations, as it
was assumed in the pre-Einstein theory of relativity by Lorentz and Poincaré, which
required the existence of an aether. Making the hypothesis that this aether is a kind of
superfluid plasma made up of positive and negative Planck mass particles interacting
with the Planck force over a Planck length, one obtains an analog of the standard model,
including gravity, which can be quantized as a nonrelativistic many body problem. In
this model nonrelativistic vortex rings in three space dimensions and one time dimen-
sion simulate the relativistic theory of closed strings in ten space-time dimensions. But
because in the vortex lattice, one obtains a large dimensionless number conceivably
advancing our understanding of the finestructure constant.
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1. INTRODUCTION

Because of the impossibility to carry out laboratory experiments with black
holes, there has been in recent years a growing interest to simulate black holes in
the laboratory with condensed matter physics analogues of general relativity, in
particular analogues offered by the physics of superfluid helium. The connection
between these two very different areas of physics is that the propagation of phonons
can be described by an effective metric (Unruh, 1981, 1995; Visser, 1998). These
models, though, require that Lorentz invariance must be understood as a dynamic
symmetry, as in the pre-Einstein theory of relativity by Lorentz and Poincaré. It
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assumed the existence of an aether, which in the condensed matter analogue is the
superfluid.

I will try to go a crucial step beyond these models, making the case that they
may tell us something more, namely a possible novel interpretation of general
relativity and ultimately of string theory, with Einstein’s nonlinear gravitational
field equation as an effective field theory (Winterberg, 2003). Since the analogue
is based on the nonrelativistic many body problem of a superfluid, the quantization
cannot lead to any divergencies. The connection with string theory is made if one
identifies the quantized vortices of a superfluid with strings, albeit not in nine
spaces plus one time dimension, but in the three space plus one time dimension of
ordinary physics.

Generating a vortex tangle in superfluid helium, one should then be able
to simulate solutions of general relativity in the laboratory. This experimental
simulation, however, fails for supersymmetry where there is no condensed matter
physics analogue, but one can ask what property the analogue would have to
posses to simulate supersymmetry. It is here where the hypothesis of negative
masses enters.

2. QUANTIZED VORTEX ANALOG MODELS

To reach a deeper insight for the description of gravity by a condensed matter
physics analogue, we start from the microscopic theory of a bosonic quantum
fluid like superfluid helium. Assume that in between the atoms of the fluid there
are short range repulsive forces with a delta function potential (Gross, 1963;
Pitaevskii, 1961)

V (r) = gδ(r) (1)

where g is a coupling constant. Then the operator field equation of the quantum
fluid is given by

ih-
∂ψ

∂t
= h-2

2m
∇2ψ + gψ†ψψ (2)

With the Hartree approximation

〈ψ†ψψ〉 → |ϕ|2ϕ (3)

the nonlinear operator field Eq. (2), becomes the nonlinear Schrödinger
equation

ih-
∂ϕ

∂t
= − h-2

2m
∇2ϕ + g|ϕ|2ϕ (4)
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which by the Madelung transformation is brought into the hydrodynamic form

∂v
∂t

+ (v · ∇) v = − 1

m
∇

(
gn − h-2

2m

∇2√n√
n

)

∂n

∂t
+ ∇ · (nv) = 0 (5)

where

Q = − h-2

2m

∇2√n√
n

(6)

is the quantum potential.
Utilizing the two Eq. (5) and (6) and neglecting the quantum potential one

obtains for small amplitudes the scalar phonon wave equation

−∂2v
∂t2

+ gn0

m
grad div v = 0 (7)

In this equation n0 is the atomic number density of the undisturbed quantum fluid,
with the wave velocity given by

a =
√

gn0

m
(8)

A second fundamental solution of (5) is a potential vortex for which curl v = 0,
and where

vϕ = a
( r0

r

)
, r > r0

vϕ = 0, r < r0 (9)

with vϕ = a at the vortex core radius r = r0. With the quantization condition for
line vortices

mrvϕ = mr0a = h- (10)

one can write for (9)

vϕ = h-

m

1

r
, r > r0

vϕ = 0, r < r0 (11)

Then, with the identity (v · ∇)v = grad
(

v2

2

)
− v × curl v and with curl v = 0, one

obtains from Eq. (5), and as before neglecting the quantum potential,

v2

2
+

( g

m

)
n = const. (12)
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or since for r ∞, v → 0 and n = n0

v2

2
= g

m
(n0 − n) (13)

Setting v2 = v2
ϕ and making use of (9) one obtains

n/n0 = 1 − (1/2)(r0/r)2 (14)

The quantum potential at the vortex core radius r = r0 = h-/ma is of the order

|Q| ∼ h-2

2mr2
0

= 1

2
ma2 (15)

It describes the zero point quantum fluctuations near the vortex core, which have
the energy density

ε ∼ |Q|
r3

0

∼ ma2

r3
0

(16)

These fluctuations set up a virtual phonon field surrounding the line vortex, which
thereby becomes the source of an attractive force field with a field strength f ,
where f 2 ∼ ε. We compare it with the square of the field strength for a Newtonian
gravitational force field of mass m at a distance r = r0.

f 2 = Gm2

r4
0

(17)

Equating (16) and (17), assuming that a = c, and hence r0 = h-/mc, we find that

Gm2 = h-c (18)

This means that m = mp, where

mp =
√

h-c

G
(19)

is the Planck mass, and where because of r0 = h-/mpc, r0 is equal to the Planck
length

rp =
√

h-G

c3
(20)

This result explains the phenomenon of “charge,” in this case the gravitational
charge, to have its cause in the zero point fluctuations of Planck mass particles
bound in vortex filaments with the vortex core radius equal the Planck length.

With a = c one then obtains from (8) that

g = mpc2

n0
(21)
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or since in the condensed state n0 = 1/r3
p, then g = mpc2r3

p = h-cr2
p whereby (2)

becomes

ih-
∂ψ

∂t
= − h-2

2mp

∇2ψ + h-cr2
pψ†ψψ (22)

We, therefore, arrive at the important conclusion that for the superfluid to
have phonons with luminal velocity, and to have vortex filaments coupled to these
phonons with a force equal to the force of Newton’s law, the fluid must consist of
Planck mass particles.

With the phonon velocity equal the velocity of light, Lorentz invariance
follows as a dynamic symmetry. And with the gravitational coupling strength
explained by the field of virtual phonons set up by the zero point fluctua-
tions of the Planck mass particles bound in quantized vortex filaments, a close
relationship between Lorentz invariance, quantum mechanics and gravity is
demonstrated.

3. THE VORTEX SPONGE ANALOG OF MAXWELL’S
AND EINSTEIN’S FIELD EQUATIONS

In the general theory of relativity, gravity is described by a second rank
symmetric tensor. A field with this property can be modeled by a tangle of a
large number of vortex filaments, or equivalently by a lattice of vortex rings.
As Kelvin had shown (Thomson, 1887), such a lattice can propagate transverse
waves mimicking electromagnetic waves, but in addition it can also propagate
transverse wave mimicking gravitational waves (Winterberg, 2003). The deforma-
tion of the vortex lattice for electromagnetic and gravitational waves is shown in
Fig. 1.

In this model gravitational waves are described as highly nonlinear vortex
waves. There the general theory of relativity is only an approximation for energies
small compared to the Planck energy. For smaller energies these waves can be
derived from a nonlinear field theory in flat space-time, which as Gupta has
shown is equivalent to Einstein’s theory in a curved space-time for a special gauge
(Gupta, 1954). For wavelengths not small compared to the Planck length, the
hydrodynamic nonlinearities of large amplitude vortex waves cannot be modeled
by a curved space-time. In the vortex sponge analogue, the gravitational wave
has two nonlinearities, first, as in Einstein’s theory where the energy momentum
tensor of the gravitational field is a source of this field, and second, for small
wavelengths where the microscopic structure of the vortex wave must be taken
into account. The latter type of nonlinearity also occurs for the electromagnetic
waves.
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Fig. 1. Deformation of the vortex lattice for an electromagnetic and a gravitational wave.

4. EXTENSION OF THE MODEL TO INCLUDE
FERMIONIC MATTER

Because the model given by (22) cannot explain Dirac spinors, and thus
cannot describe ordinary matter composed of fermions, it cannot be complete.
Holding firm to Planck’s conjecture that all of physics should be reduced to
equations containing as free parameters only the Planck length, mass and time,
the only freedom left is to introduce besides positive, also negative Planck mass
particles. The introduction of negative masses is not possible in a relativistic theory
where the particle number operator does not commute with the Hamilton operator,
but it is possible in an exactly nonrelativistic theory.

Going beyond the simple model described by Eq. (22) I had suggested as the
fundamental equation (Winterberg, 2003)

ih-
∂ψ±
∂t

= ∓ h-2

2mp

∇2ψ± ± 2h-cr2
p(ψ†

±ψ± − ψ
†
∓ψ∓)ψ± (23)

It assumes that the vacuum is occupied by an equal number of positive and
negative Planck mass particles, with repulsive short-range forces between particles
of equal sign, and attractive forces between those of opposite sign. Since during
the interaction between particles of opposite sign, the momentum, not the energy,
fluctuates, momentum conservation is violated. With �q ∼ rp and �p ∼ mpc,
Heisenberg’s relation �p�q ∼ h- is thereby recovered at the most fundamental
microscopic level. Furthermore, as Schrödinger (Schrõdinger, 1931) had shown
in his interpretation of the Dirac equation as a “Zitterbewegung,” caused by the
negative energy states of the Dirac equation, negative masses are hidden in the
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Dirac equation. But if this is so, then the Dirac equation should, and can in fact, be
derived from the assumption of the existence of negative masses, as it was shown
by Hönl and Bopp (Hönl, 1952; Bopp, 1949).

In the Hartree–Fock approximation (23) the interaction between equal sign
Planck mass particles becomes twice as large as the interaction between Planck
mass particles of opposite sign. And in making thereafter the Madelung transfor-
mation, one arrives at two coupled equations describing two slightly interacting
superfluids, with wave-like and vortex-like solutions for both of them.

5. THE DIMENSION OF THE VORTEX LATTICE CELL

In a two dimensional lattice of line vortices, as realized in the von Karman
vortex street, for a lattice to be stable requires that (Schlayer, 1928)

r0

l

 3 × 10−3 (24)

where r0 is the vortex core radius and l the distance in between two adjacent line
vortices. With R = l/2 as the radius of the vortex lattice cell, one has

R

r0

 147 (25)

To my knowledge no comparable stability calculation has been made for a three-
dimensional lattice of vortex rings, but one can there estimate a value for R/r0 by
the fact that the fluid velocity of a vortex ring at the distance R is larger by the
factor log( 8R

r0
). Therefore, setting r0 = rp, one obtains a value for R

rp
, by solving

the equation

R

rp


 147 log

(
8R

rp

)
(26)

for R
rp

, with the result that (Winterberg, 2003)

R

rp


 1360 (27)

6. RING VORTEX RESONANCE ENERGY

In the model described by Eq. (23), a ring vortex of radius R and core radius
rp has a resonance frequency against elliptic deformations of the ring given by

ωv 
 crp

R2
(28)

If quantized, this resonance leads to two energies, one for the vortex formed by
the positive, and a second one by the negative mass component of Planck mass
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particle medium. Hence, for the energy

h-ωv = ±mpc2
( rp

R

)2
(29)

one has the two quasiparticle mass components

m± = ±mp

( rp

R

)2
(30)

With the value R
rp

= 1360 one finds that m± 
 ±5 × 1012 GeV.
The existence of negative masses leads to the generation of positive masses

by the positive gravitational field energy of a positive mass interacting with a
negative mass. For a positive-negative mass dipole this energy is

Ein = G|m±|2
r

(31)

where the gravitational force comes from the attractive virtual phonon field set
up by the zero point fluctuations of Planck mass particles bound in the quantized
vortex filaments. With quantum mechanics requiring that

|m±|rc = h- (32)

and by setting Ein = mc2, r can be eliminated from (31) and (32), with the result
that

m = G|m±|3
h-c

= |m±|3
m2

p

(33)

or

m

mp

=
( |m±|

mp

)3

=
( rp

R

)6
(34)

For R
rp

= 1360 one has m
mp


 2 × 10−19 where m turns out to be about equal the
typical mass of a baryon like the mass of the proton.

Inserting (34) into the expression for the strong nuclear force obtained by
Wilczek (Wilczek, 1999).

m

mp

= e
−k
α (35)

where α is the finestructure constant at the grand unification scale, and where
k = 11

2π
is calculated from the antiscreening of the strong force, one finds that

1

α
= 2π

11
log

(mp

m

)
= 12π

11
log

(
R

rp

)
(36)
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For R
rp

= 1360, this becomes

1

α

 24.8 (37)

which is surprisingly in good agreement with the empirical value 1/α = 25 given
by Wilczek (Wilczek, 1999).

Our model, therefore, suggests that the large nondimensional numbers in
elementary particle physics, like the finestructure constant, have their origin in the
large nondimensional numbers of classical fluid dynamics.

7. CONCLUSION

In pursing the analogies between condensed matter physics, in particular
superfluid condensed matter physics, many old problems, like quantum gravity
(still at the forefront of fundamental physics research), appear in a new light and
offer surprisingly different solutions. Furthermore, the analogies between general
relativity and the vortex wave solutions of a superfluid make the study of these
solutions accessible to experiments. However, an unsurpassable barrier for such
analogies is supersymmetry, in the model related to the hypothetical existence
of hidden negative masses. Most important though, is that these models offer
a completely “finitistic,” that is free of all divergences, unified field theory of
elementary particles in the three space and one time dimension of all physics
laboratories.
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